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Coupling of electron transfer to a "chemical" process such as 
ion/molecule transfer or conformational change holds particular 
importance in biology for controlling reaction pathways and 
transducing energy.1-* The basis for analyzing gated (directional) 
electron-transfer reactions is a square (or triangular) scheme, in 
which electron transfer and chemical reactions combine as a 
thermodynamic cycle.5-7 Electrochemical potential-reversal 
methods such as cyclic voltammetry thus offer an excellent way 
to visualize and untangle the interlinked kinetics and energetics 
of many of these systems.7-9 

In redox-driven "proton pumps" 3 or enzymes such as hydro-
genases or nitrogenases,2-10 electron transfer is coupled to proton 
transfer. Key questions include the varied nature and charac­
teristics of coupling and the manner by which protons are 
transferred through proteins. Studies using site-directed mu­
tagenesis are important in identifying the groups that mediate 
proton transfer." Here we present a voltammetric study of the 
redox kinetics of a mutant ferredoxin that appears to be kinetically 
defective with regard to coupled proton transfer. Configuration 
of the protein molecules as a nondiffusing, electroactive monolayer 
facilitates temporal resolution of events and enables visualization 
of some interesting aspects of gated reactions. 

The 7Fe ferredoxin I (Fd I) from Azotobacter vinelandii has 
been extensively characterized by X-ray crystallography and 
spectroscopy.12-15 The [3Fe-4S] cluster is unusual in that the 
one-electron-reduced form [3Fe-4S]° exists in either of two 
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Figure 1. Initial-sweep voltammograms of films of D15N (solid line) 
and native (dashed line) forms of A. vinelandii Fd I measured at a scan 
rate of 930 mV s-1. Capacitance background has been largely subtracted 
to save space, but faradaic features remain as observed, i.e., without any 
attempt to correct for background slope. 

spectroscopically distinct states depending upon pH.15,16 No such 
pH effect is observed for the oxidized [3Fe-4S]+ cluster. The 
pH dependence of the reduction potential E0' suggests uptake of 
a single proton with pK ~ 7.8. It has been concluded that the 
proton binds directly at the [3Fe-4S]° cluster, most likely to a 
/^-sulfide.17 

Scheme I describes the overall redox reaction.18 At high pH, 
E0' (E0'aiit) is independent of pH whereas at low pH, the 
protonation equilibrium lies far to the right and E"' is pH-
dependent. The [3Fe-4S] cluster is buried ca. 8 A beneath the 

Scheme I 
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closest solvent-accessible surface,12 where the carboxylate group 
of aspartate-15 (D15) is salt-bridged to a lysine (K84).13 We 
have changed Dl 5 to asparagine by site-directed mutagenesis.17 

In the resulting Dl 5N mutant, the salt bridge to K84 is broken, 
but otherwise, crystallographic and spectroscopic studies show 
that the structure and unusual proton-binding properties of the 
[3Fe-4S] clusterareconserved.13'17 In either case, the minimum 
distance between the cluster (one of the M2-S atoms) and the 
carboxyl (D 15) or carbamide (N 15) O atom is 4.8 A.13'17 

Thermodynamically, the effect of the change is moderate; the pK 
of the cluster is lowered to 6.9 and £°'aik is raised from -430 mV 
to -409 mV.17." 

In terms of redox kinetics, however, native and D15N forms 
exhibit dramatically different behavior. Figure 1 shows the 
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is coulombically balanced by proton transfer. 
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Figure 2. Scan-rate dependence of experimental (symbols) and simulated 
(solid lines) cathodic peak potential, E^ (a), ratio of anodic-to-cathodic 
peak currents, ip»//pc (b), and the apparent reduction potential E" 'apP (c), 
as observed for reduction of the [3Fe-4S]+ cluster of Dl 5N ferre doxin 
configured as an electroactive film in contact with electrolyte at different 
pH values. Simulation parameters (rate constants) are given in the text. 

voltammetry of native and D15N Fd I, immobilized as near-
monolayer films at a pyrolytic graphite "edge" (PGE) elec­
trode,9'20'21 measured under conditions of pH that yield similar 
driving forces for protonation of [3Fe-4S]° (respectively pH 6.5 
and 5.9)." As the scan rate (v) is raised to the value 930 mV 
S-1 as shown, the faradaic response for native Fd I remains 
essentially reversible with little sign of complications from rate-
determining coupled reactions. By contrast, the oxidation wave 
for Dl 5N collapses (while the reduction peak remains large). As 
shown in Figure 2a, the reduction peak and (eventually to a lesser 
degree) the attenuated oxidation peak/ wave shift to more negative 
potential as the scan rate is increased. 

Results obtained for D15N over a wide range of pH and v 
values were analyzed according to the reversible model shown in 
Scheme I in which electron transfer is intrinsically facile (large 
fcs),

22 but rates of dependent chemical processes, in this case 
protonation (=fc0n[H+]) and deprotonation (ko(!) of [3Fe-4S]°, 
are retarded and comparable with v.18'23 We used a modification 
of the computational procedure described recently for the case 
of redox-coupled ligand binding to a [4Fe-4S] cluster.9 Rate 
constants fcon and /c0ff, as well as the standard first-order 
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electrochemical rate constant /cs,
22 were each assumed to be 

independent of pH and defined as adjustable parameters in 
simulation-based model fitting.23 We exploited the following 
observations: (a) that the position of the reduction peak Ep0 is 
sharply defined and depends on pH and v and (b) that the peak 
current ratio fpa/ipc is a function of pH, v, and cathodic switching 
potential. Results are shown in Figure 2a,b. In support of the 
model, an excellent fit (solid lines) was obtained with km = 3 ± 
1 X 107 M-1 s-1, /toff = 3 ± 1 s-1, and ks = 500 ± 200 s"1. 

The voltammetric experiment thus allows unambiguous iden­
tification of an otherwise rapid electron-transfer reaction that is 
gated, in this case by a proton-dependent chemical process. The 
rate constants Zc0n and fc0ff for D15N are much smaller than for 
native Fd I, which shows little evidence for kinetic decoupling 
under comparable conditions.24 From the kinetic results, and 
with the weight of evidence from crystallography, spectroscopy, 
and redox thermodynamics, we have proposed that the K84-D15 
salt bridge, NH2H

+—-OOC, facilitates proton transfer between 
the cluster and solvent water molecules.17'24'25 An interesting 
possibility is that the bridging H+ is directly involved in a proton 
conduction pathway. 

A more subtle effect pertaining to the energetics of electron-
transport systems is also demonstrated. The negative shift OfEf0 
with increasing scan rate, combined with the almost stationary 
value or slight negative shift of Ep3, produces a decrease in the 
reduction potential (E0'ipv = (£pc + 2spa)/2) as the scan rate is 
increased (Figure 2c).26 In the extreme situation, if the electron 
is retrieved (or relayed further on) before the cluster can be 
protonated, then the "time-dependent" reduction potential ulti­
mately reverts to the limiting value measured under alkaline 
conditions.27 By their very nature, the energetics of biological 
electron-transport systems may stray far from conditions of 
equilibrium. The result underscores the expectation that transient 
processes in rapid electron-transport systems may be associated 
with reduction potentials that deviate considerably from the static 
values determined by potentiometry. 
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